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Abstract. We analyse the violations of linear fluctuation–dissipation theorem (FDT) in the
coarsening dynamics of the antiferromagnetic Ising model on percolation clusters in two
dimensions. The equilibrium magnetic response is shown to be nonlinear for magnetic fields of
the order of the inverse square root of the number of sites. Two extreme regimes can be identified
in the thermoremanent magnetization: (i) linear response and out-of-equilibrium relaxation for
small waiting times (ii) nonlinear response and equilibrium relaxation for large waiting times.
The functionX(C) characterizing the deviations from linear FDT crossovers from unity at short
times to a finite positive value for longer times, with the same qualitative behaviour whatever the
waiting time. We show that the coarsening dynamics on percolation clusters exhibits stronger
long-term memory than usual Euclidean coarsening.

1. Introduction

Ageing experiments in spin glasses [1, 2] first carried out by Lundgrenet al, have generated a
large amount of experimental as well as theoretical work. For a review on recent theoretical
developments in this field, we refer the reader to [3]. Two types of experiments have
been investigated: the zero-field-cooled experiment and the thermoremanent magnetization
experiment, both leading to similar results. In this paper, we shall restrict ourselves to
the thermoremanent magnetization experiment, consisting of first quenching the system
below its glass transition temperature at timet = 0, applying a small constant magnetic
field up to the waiting timetw, switching off the magnetic field at timetw, and measuring
the magnetization relaxation at timetw + τ . It is an experimental observation that the
magnetization relaxation depends on the ‘age’ of the system, namely, on the waiting time.
Different theoretical approaches have been developed to date, for instance: droplet picture
[4, 5], mean-field models [6] or phenomenological trap models [7]. Several scenarios have
been proposed, such as ‘true’ versus ‘weak’ ergodicity breaking [7], or ‘interrupted’ ageing
[7]. The first two scenarios depend on whether ergodicity breaking occurs for finite or
infinite waiting times. ‘Interrupted’ ageing means that, at a finite temperature, there is no
longer ageing if the waiting time is larger than finite (but possibly large) timescale. In other
words, the system equilibrates in a finite time.

Ageing can be characterized by the violation of the fluctuation–dissipation theorem
(FDT). If the system has reached thermodynamic equilibrium before the magnetic field
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is switched off at timetw, the magnetization response is then independent ontw. This
situation can be realized either at large temperatures, or in an ‘interrupted ageing’ situation
(which will be the case in this paper), or, in the presence of non-interrupted ageing, by
formally taking the limit tw → +∞ before the thermodynamic limitN → +∞. Then,
the equilibrium thermoremanent magnetizationm(τ) is related in a simple fashion to the
autocorrelation of the spin configurations at timestw and tw + τ via the FDT (see section 3
for more details). In out-of-equilibrium dynamics, the FDT is no longer valid, and there
are analytical predictions in some mean-field solvable models of what the FDT violation is
[6, 8, 9]. In particular, Cugliandolo and Kurchan [6] proposed that the out-of-equilibrium
linear response kernelR(t, t ′) relating the magnetization to the correlation depends ont and
t ′ only through the autocorrelationC(t, t ′). The FDT violation is then characterized by a
functionX(C) that depends only on the autocorrelation, and, as recalled in section 3, can
be obtained from the thermoremanent magnetization simulations.

The aim of this paper is to study the FDT violation in dilute Ising antiferromagnets at
the percolation threshold, with a Hamiltonian

H = J
∑
〈i,j〉

σiσj (1)

where the summation is carried out over neighbouring pairs of spins on a percolation cluster.
In practice, we shall only study here percolation clusters generated on a square lattice in a
two-dimensional space. It is well known that, for a finite cluster ofN sites, the dynamics
freezes as the temperature decreases below the glass crossover temperature [10]

Tg = 2JdνP
lnN

(2)

with d the fractal dimension andνP the percolation exponent. This glass crossover originates
from the conjugate effect of large-scale ‘droplet’ excitations (with zero-temperature energy
barriers that scale likeJ lnN [11, 12]), and the divergence of the correlation length at low
temperatures [13].

It is of interest to understand the FDT violation in these systems for two reasons. First,
a quite different behaviour from Euclidean coarsening is expected, with more pronounced
long-term memory effects owing to the slow dynamics of ‘droplet’ excitations. We
shall indeed show that the functionX(C) characterizing the fluctuation–dissipation ratio
crossovers from unity to a smaller valueX0 in the ageing regime. WhereasX0 is zero in
Euclidean coarsening, we find a non-zero value for coarsening on percolation clusters. This
indicates that, even though these non-frustrated systems show interrupted ageing, the FDT
violation in these systems shares some common features with the behaviour of spin-glass
models in three [18] and four [19] dimensions. The second motivation for studying these
systems is, as shall be developed in section 2, that the low-temperature magnetic response
to an external magnetic field is linear only for magnetic fields smaller than a typical field
h∗ scaling likeT/

√
N (see section 2). One is thus led to study the FDT violation in the

absence of linear response to an external magnetic field.
This paper is organized as follows. Section 2 is devoted to analysing the equilibrium

magnetic response to an external magnetic field and to show that the low-temperature
equilibrium response is nonlinear. Section 3 recalls how the functionX(C) characterizing
the FDT violation can be obtained from the thermoremanent magnetization experiment. The
results of our simulations are presented and discussed in section 4. Section 5 is devoted to
some final remarks.



Coarsening on percolation clusters 5205

2. Absence of linear response at low temperature

In this section, we analyse the low-temperature equilibrium response to an external magnetic
field. We consider a percolating cluster ofN sites, and first analyse a toy-model for the
magnetization response to an external magnetic field. The equilibrium magnetizationM(h)

in an external magnetic fieldh can be expressed as

M(h) = ∂ ln〈exp(βhM)〉0
∂(βh)

(3)

where 〈X〉0 denotes the thermal average of the observableX with respect to the system
without a magnetic field, andX denotes the disorder average.

We are first going to formulate in section 2.1 a low-temperature toy-model which allows
analytical calculations of (3). The predictions from this toy-model will be compared with
simulations in section 2.3.

2.1. Formulation of the low-temperature toy-model

Our toy-model relies on some assumptions about the geometry of the percolating clusters,
and further assumptions about the low-temperature magnetization distributions. The validity
of these assumptions relies on the fact that some of the predictions of our toy-model can
be successfully compared with simulations (see section 2.3).

In the dilute antiferromagnet model (1), the magnetization of the Néel state of the
percolating cluster is equal, up to a sign, to the difference1 = NA −NB in the number of
sites in the two sublatticesA andB, the number of sites in the percolating cluster being
N = NA + NB . In order to allow for analytic treatment, we assume that bothNA andNB
are independent variables and Gaussian distributed according to

P(NA,B) = 1√
2πσ

exp

{
− 1

2σ 2

(
NA,B − 1

2
N̄

)2
}

(4)

with a width σ scaling likeσ ∝
√
N̄ . Within these assumptions, the distribution of the

Néel state magnetization1 is also Gaussian distributed:

P(1) = 1

2
√
πσ

exp

{
− 1

4σ 2
12

}
. (5)

At zero temperature, the magnetization distribution of a given percolation cluster consists
of two delta functions located atM = ±1. As shown in figure 1, the effect of a small
temperature is a broadening of the two peaks at±1. The numerical calculations ofP(M)
shown in figure 1 were carried out using the Swendsen–Wang algorithm [14].

In our toy-model, we first make the approximation that all the geometry dependence
of the magnetization response is encoded in the single parameter1. This approximation
becomes exact in the zero-temperature limit. At a finite but sufficiently low temperature, we
still assume this single-parameter description of geometric fluctuations. We further assume
that the effect of a finite temperature is a Gaussian broadening of the peaks at±1 in the
magnetization distribution:

P1,σβ (M) =
1

2
√

2πσβ
exp

{
1

2σ 2
β

(M −1)2
}
+ 1

2
√

2πσβ
exp

{
1

2σ 2
β

(M +1)2
}
. (6)

The thermal broadeningσβ originates from low-temperature excitations above the Néel state.
At sufficiently low temperatures, only the lowest energy excitations contribute toσ . If the
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Figure 1. Magnetization distribution of a cluster ofN = 836 sites,with1 = 36. This cluster is
shown in figure 4 (cluster A).

system was not diluted, these excitations are properly described as a dilute gas of clusters
of spins with a wrong orientation with respect to the Néel state. The contribution toσβ
of these excitations is of the order of

√
Nf (T ), f beingN -independent and behaving like

ln f (T ) ∼ −J/T . It is also well known that long-range low-energy ‘droplets’ also exist
in dilute percolating antiferromagnets, owing to the self-similarity of the structure, and the
fact that the order of ramification of the lattice is finite [15]: it costs a finite energy to
isolate a cluster of arbitrary size from the rest of the structure. These ‘droplet’ excitations
can be clearly identified in the magnetization distribution of the ferromagnetic Ising model
[16]. In fact, we can account for these droplet excitations in an effective distribution of
the parameterσβ over the Ńeel state magnetization1. We shall return to this point in
section 2.3.

In (6) we have chosen a Gaussian contribution of thermal excitations. The resulting
contribution to the magnetization of these thermal excitations is linear in the magnetic field.
In fact, in order to describe how the magnetization saturates for magnetic fields scaling like
N0, one should refine our toy-model to incorporate non-Gaussian tails in the magnetization
distribution. Since, as previously mentioned, we are mainly interested in magnetic fields
scaling likeT/

√
N , these non-Gaussian tails do not play any significant role in this low

magnetic field physics.

2.2. Nonlinear effects

Within this toy-model, it is easy to calculate the magnetic field dependence of the average
magnetization for a fixed value of1. To do so, we note that the magnetization distribution
in our toy-model is nothing but the convolution ofP1,0 andP0,σβ . As a consequence,

〈exp(βhM)〉1,σβ = 〈exp(βhM)〉1,0〈exp(βhM)〉0,σβ
from which we deduce the average magnetization for a given value of1:

M(h) = σ 2
β

h

T
+1 tanh

(
h1

T

)
.
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Figure 2. Variations ofM(h)/σ versushσ/T in the toy-model calculation (see (8)), for various

values of the parameterxβ =
√
σ 2
β /σ .

For a fixed1, and for a magnetic field smaller than the crossover magnetic fieldh∗ defined
as (

h∗

T

)2

= 3(σ 2
β +12)

14
(7)

the magnetization response is linear, whereas it is nonlinear for magnetic fields stronger
than h∗. Since1 and σβ scale like

√
N , the crossover fieldh∗ is small even for large

systems. More precisely, we now average the magnetization over the geometry:

M(h) = σ 2
β

h

T
+
∫ +∞
−∞

P(1)1 tanh

(
h1

T

)
d1

= σ 2
β

h

T
+ σ

2
√
π

∫ +∞
−∞

u tanh

(
hσ

T
u

)
exp(−u2/4) du. (8)

We should distinguish between the two regimes

weak fields:h� T/σ M(h) ' (2σ 2+ σ 2
β )h/T

intermediate fields:T/σ � h� T σ/σ 2
β M(h) ' 2σ/

√
π + σ 2

βh/T .

As the magnetic field increased from zero, the response to the external field is first linear,
and, for magnetic fields of the order ofT/σ , crossovers to a nonlinear behaviour. This

behaviour is shown in figure 2 for various values of the ratioxβ =
√
σ 2
β /σ .

2.3. Comparison with simulations

We now compare the predictions of our toy-model for the equilibrium magnetic response of
percolation clusters with numerical calculations. We generated 2000 clusters for each value
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Figure 3. Histogram of log((h∗)212/T 2), for different values of the Ńeel state magnetization
1. The lines correspond to1 = 1, 2, 3, 4 and the symbols to values of1 between 5 and 19.
The temperature isT = 0.4. 2000 clusters contained in the 20× 20 square were generated for
each value of1.

of the Ńeel state magnetization1. All of these clusters are contained inside the 20× 20
square. In order to compare with the toy-model results (7), we have calculated for each of
these clusters the crossover fieldh∗ defined by the equality of the linear and cubic terms in
the cumulant expansion (3):(

h∗

T

)2

=
∣∣∣∣ 6〈M2〉0
〈M4〉0− 3〈M2〉20

∣∣∣∣ (9)

the magnetization distribution in a zero magnetic field being calculated with the Swendsen–
Wang algorithm [14]. Figure 3 shows the histogram of log((h∗)212/T 2). In the regime
1 � σβ , equation (7) becomes(h∗/T )2 = 3/12: the histograms in figure 3 would be aδ
function located on the value log 3. Even if the histograms in figure 3 have a finite width, we
note that the scaling(h∗/T )2 ∼ 1/12 still holds, at least for not too small values of1. This
suggests thatσβ is not1-independent but is rather distributed, and scales on average like1.
We attribute this behaviour to the existence of low-energy droplet excitations. Since these
excitations correspond to large magnetic domains, the magnetization induced by reversing
these domains should be coupled to the total Néel state magnetization1.

3. Thermoremanent magnetization experiment

In this section, we recall how the functionX(C) characterizing the FDT violation
can be obtained from the magnetization relaxation in the thermoremanent magnetization
experiment. We initially assume linear response. In the presence of a time-dependent
magnetic fieldh(t), the linear contribution to the magnetization is

m[h](t) =
∫ t

−∞
R(t, t ′)h(t ′) dt ′ (10)
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with R the kernel response. We use a working hypothesis

R(t, t ′) = βX(C(t, t ′))θ(t − t ′)∂C(t, t
′)

∂t ′
(11)

a form of the response kernel suggested by the mean-field model studies [6, 8, 9]. The
autocorrelationC is

C(tw + τ, tw) =
〈

1

N

∑
i,j

σi(tw)σj (tw + τ)
〉
. (12)

In most of the spin-glass models (for instance: Sherrington–Kirkpatrick model, Edwards–
Anderson model), the correlation length is vanishing, the reponse is purely local in space,
and the termsi 6= j vanish in (12). In the presence of a finite correlation length, the
thermoremanent magnetization is conjugate to thespatially non-localautocorrelation (12).
From this point of view, (10)–(12) can be safely taken as an extension ofX(C) to our
problem, in the sense that (i) linear FDT readsX(C) = 1 (ii) we recover the usual definition
of X(C) in the limit of a zero correlation length.

Barrat [17] recently used an interesting different method to handle spatially non-local
responses and nonlinearities: he measured the staggered magnetic response to a random
field with a zero mean. In this way, the magnetic response to the random field is linear
as a function of the width of the random field distribution, and conjugate to thelocal
autocorrelations. We stress that Barrat does not consider the same conjugate quantities as
ours, and the functionsX(C) are thus different. In particular, we cannot handle symmetry
breaking within our framework. However, in the case of the present problem of magnetic
systems on percolation clusters, the nonlinearities are quite weak and, as we shall see, we
can characterize their effects on dynamics, which could not be possible in the framework
of Barrat calculations.

In the thermoremanent magnetization experiment,h(t) is a step functionh(t) =
hθ(tw − t), so that the thermoremanent magnetization reads

m(tw + τ, tw) = βh
∫ C(tw+τ,tw)

0
X(q) dq

where we have assumedC(tw + τ, 0) = 0 (we have indeed checked that this quantity was
vanishing in our simulations). The functionX(C) is then obtained by differentiating the
magnetic response

χ(tw + τ, tw) = T

h
m(tw + τ, tw)

with respect to the autocorrelation:X(C) = dχ/dC. If the waiting time is large enough so
that equilibrium has been reached, the magnetic responseχ(τ) is tw-independent,X(C) is
unity, and we recover the linear FDT:

χ(τ) = T

h
m(τ) = Ceq(τ ). (13)

Recently a number of efforts have been devoted to characterize how the FDT is violated
in an out-of-equilibrium situation. Analytical solutions were obtained in the framework
of mean-field models [6, 8, 9]. The fluctuation–dissipation ratio was also obtained in
numerical simulations in various models. For instance, in the case of spin glasses, Franz
and Rieger [18] have analysed the Edwards–Anderson model in three dimensions; more
recently, Marinariet al [19] have studied the FDT violation in three- and four-dimensional
Gaussian Ising spin glasses, and shown that the fluctuation–dissipation rationX(C) is, in
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these models, equal to the static Parisi functionx(C). A model of fragile glass was also
studied recently [20].

As explained in section 2, the magnetic response of percolating dilute antiferromagnets
is not linear for magnetic fields of the order ofT/

√
N . In the absence of linear response,

the equilibrium magnetization can be expanded in powers of the magnetic fieldh, the
coefficients of this expansion being the cumulants of the magnetization distribution (see
equation (3)). Following the work of Gallavotti and Cohen [21] in the context of chaotic
systems in classical mechanics, Kurchan [23] recently proposed an extension of the FDT to
incorporate the effects of nonlinear response. However, we cannot use this generalization
here in our Monte Carlo simulations since this would involve the calculation of the time-
dependent magnetization distribution, included the tail where the magnetization is opposite
to the magnetic field [22]. The study of this nonlinear FDT and its violations in the context
of glassy dynamics goes beyond the scope of computer resources available at present. This
is why we adopt here a more phenomenological approach, consisting in generalizing (11)
to the nonlinear regime:

Rh(t, t
′) = βXh(C(t, t ′))θ(t − t ′)∂C(t, t

′)
∂t ′

with a magnetic-field-dependentXh.
In the presence of nonlinearities and out-of-equilibrium dynamics,Xh(C) contains

contributions both from the nonlinearities and the ageing dynamics. However, in the limit of
large waiting times, the system has equilibrated and thus only the nonlinearities contribute
to Xh(C). In the opposite limit of small waiting times, the nonlinearities do not contribute
to X(C), and, in this limit, a contact can be made with FDT violations in other systems,
especially Euclidean coarsening dynamics [17].

4. Numerical results forX(C)

We now present our numerical calculations ofX(C). Our simulations were carried out
on two clusters: a clusterA with N = 836 sites,1 = 36, and a smaller clusterB with
N = 294 sites and1 = 16. These two clusters are shown in figure 4.

We first present in section 4.1 the equilibrium dynamics: the waiting time is long
enough for the system to have equilibrated in the external magnetic field, and, on the basis
of the arguments presented in section 2, we expect sensible nonlinear effects. In fact, the
relaxation time is finite even in the thermodynamic limit (interrupted ageing). As the size
of the system increases, the relaxation time will first increase, owing to zero energy barriers
scaling likeJ lnN [10], and saturate when the linear sizeN1/d becomes larger than the
correlation length given by [13]

ξT ∼ exp

(
2JνP
T

)
with νP the percolation critical exponent. The limit of small waiting times is presented
in section 4.2. In this situation, the magnetic response is linear. The combined effects
of nonlinearities and out-of-equilibrium responses arising for intermediate waiting times
are presented in section 4.3. Finally, the dependence onτ of the autocorrelation and the
magnetic response are presented in section 4.4.
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Figure 4. The two clusters that we studied. The cluster A containsN = 836 sites, and1 = 36.
The cluster B containsN = 294 sites, and1 = 16.

4.1. Large waiting times: equilibrium dynamics and nonlinear response

We first examine the regime of a large waiting timetw, large enough for the magnetic
response to be independent ontw. In practice, we systematically checked that the magnetic
response was unchanged when the waiting time was increased by a factor of 10. The
magnetic responseχh is plotted as a function of the autocorrelationC in figure 5 for the
clusters A and B. We clearly observe on figure 5 important nonlinear effects since the
magnetic responseχh depends explicitly on the magnetic fieldh, even at the relatively
high temperatureT = 0.8. In the short-time limit, we observe a behaviour of the type
χh(C) = C − C(0)h , whereas in the long time limit,χh(C) = X(0)h C. In order to interpolate
between these two behaviours, we have fitted our numerical results to the form

Xh(C) = dχh(C)

dC
= (1−X(0)h )fC∗h,λh(C)+X(0)h (14)

with

fC∗h,λh(C) =
(

1+ exp

(
−C − C

∗
h

λh

))−1

whereλh controls the width of the crossover between the short- and long-time regimes,
andC∗h = C(0)h /(1− X(0)h ). The fits obtained in this way are shown in figure 5, and, once
the three parameters have been adjusted, a very good agreement with the simulation data
is obtained. The variations ofXh(C) deduced from the fits are shown in figure 6 for the
same simulations as in figure 5. We observe in figure 6 thatXh(C) crossovers from unity at
short times to a finite valueX(0)h in the long-time relaxation. If the response to the external
magnetic field was linear, one would expect thatX(C) = 1. Even though we could not
address this question here, we expect a nonlinear FDT of the type [23] to hold in the long
waiting time limit.
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Figure 5. Variation of the magnetic responseχh(C) versus the autocorrelationC in equilibrium
relaxation. The temperature isT = 0.8, and the waiting time istw = 105. The magnetic fields
are h = 0.1 (squares),h = 0.2 (circles) andh = 0.3 (crosses). The curves have been fitted
using the procedure described in the text.

Figure 6. Variation ofXh(C) versusC in equilibrium relaxation. The temperature isT = 0.8.
The variations ofXh(C) are deduced from the simulations presented in figure 5.

4.2. Small waiting times: out-of-equilibrium dynamics and linear response

In the short waiting time limit, the thermoremanent magnetization is linear as a function
of the magnetic field. We have shown in figure 7 the variations of the magnetic response
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Figure 7. Variations of the magnetic responseχ(C) versus the autocorrelationC in the short
waiting time limit (tw = 102, 103), andh = 0.2, 0.3. The corresponding variations ofX(C) are
shown in the inset.

χ versus the autocorrelationC for the two values of the magnetic fieldh = 0.2, 0.3, and
tw = 102, 103. Linear response is clearly observed. The variations ofX(C) are shown
in the inset of figure 7. Interestingly, the variations ofX(C) in this situation where out-
of-equilibrium effects are dominant are qualitatively the same as those in section 4.1:X

crossovers from unity at short times to a finite value in the long-time limit. We have no
understanding of the reason why the variations ofX(C) are qualitatively the same in the
small and large waiting time limits, where deviations from linear FDT originate respectively
from the out-of-equilibrium dynamics and nonlinear response.

The fact thatX(C) is finite in the ageing regime is a quite noticeable difference with
Euclidean coarsening [17], whereX is vanishing in the ageing regime (the linear response
kernelR in (10) is zero in this regime). The long-term memory of coarsening dynamics
on percolating structures is thus stronger than for Euclidean dynamics, which is maybe not
surprising on the general grounds recalled in the introduction: a ‘droplet’ of sizeN has
a zero-temperature energy barrier scaling such as lnN [10–12], and a finite energy of the
order of 2CJ , C being the order of ramification [15].

4.3. Intermediate waiting times: out-of-equilibrium dynamics and nonlinear response

In order to examine the conjugate effects of nonlinearities in the magnetization response and
out-of-equilibrium dynamics, we carried out the thermoremanent magnetization simulation
with the cluster B at the temperatureT = 0.55, and for a waiting timetw = 106. The
results are shown in figure 8, withτ up to 107. We have checked that equilibrium was not
reached by carrying a simulation with a waiting timetw = 107. On the other hand, the
magnetic responseχh depends explicitly on the magnetic fieldh, as is visible in figure 8.
We observe thatXh(C) can still be fitted by the form (14), even though we could not reach
very small values of the correlation and magnetic responses, even forτ = 107.
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Figure 8. Variations of the magnetic responseχh(C) versus the autocorrelationC for the cluster
B, T = 0.55, tw = 106, h = 0.1 (circles),h = 0.2 (squares), 0.3 (crosses). The inset shows the
corresponding variations ofX(C).

4.4. τ -dependence ofχ(tw + τ, tw) andC(tw + τ, tw)
In spin-glass models, the short-time regimeχ(tw+ τ, tw) = C(tw+ τ, tw)−C(0)(tw) is valid
up to a timeτ ∗ of the order of the waiting timetw [18]. As shown in figure 9, we indeed
observe such a dependence ofτ ∗ in the out-of equilibrium situation:τ ∗ is of the order of
102 for tw = 102, and of the order of 103 for tw = 103. However, for larger waiting times,
nonlinearities significantly reduceτ ∗ (τ ∗ ' 103 for tw = 105 in figure 9). We observe in
figure 10 in the casetw = 105, T = 0.8 (equilibrium situation) thatτ ∗ is also a function of
the magnetic fieldh (the value ofτ ∗ for h = 0.1 is one order of magnitude larger than for
h = 0.2). This effect is also visible in the out-of-equilibrium simulation shown in figure 10
(T = 0.55). However, from our simulations, we cannot make a precise statement on the
variations ofτ ∗ as a function ofh for large waiting times.

5. Conclusions

We have thus carried out Monte Carlo simulations of the violation of the linear FDT in
dilute percolating antiferromagnets. We have shown that these systems exhibit nonlinear
response for magnetic fields of the order ofT/

√
N . In the small waiting time regime,

the thermoremanent magnetization is linear in the magnetic field, but depends explicitly on
the waiting time. On the other hand, for sufficiently large waiting times, the system has
equilibrated (interrupted ageing), and the magnetic response is nonlinear.

In the strongly out-of-equilibrium regime, the functionX(C) is non-vanishing in the
ageing regime, in contrast to the usual Euclidean coarsening behaviour. This shows
that coarsening on percolation clusters has a stronger long-term memory than Euclidean
coarsening [17], whereX vanishes in the ageing regime. This stronger memory kernel
originates from the existence of low-energy large-scale ‘droplet’ excitations with zero-
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Figure 9. Variations ofχ(tw + τ, tw) + C(0)(tw) (diamonds:h = 0.2, crosses:h = 0.3) and
C(tw+ τ, tw) (full curves) versusτ . The waiting times aretw = 102, 103, 105. The temperature
is T = 0.8.

Figure 10. Variations ofχ(tw + τ, tw) + C(0)(tw) (squares:h = 0.1, diamonds:h = 0.2,
crosses:h = 0.3) andC(tw + τ, tw) (full curves) versusτ . The waiting times aretw = 105

(T = 0.8), andtw = 106 (T = 0.55).

temperature energy barriers scaling such asJ lnN . Interestingly, within the droplet picture
for finite-dimensional spin-glass systems [4, 5], spin-glass dynamics can be thought of
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as a domain of growth dynamics in the presence of disorder and frustration†. We refer
the reader to [24] for a detailed comparison between the droplet picture and numerical
simulations of finite-dimensional spin-glass models. In contrast to these finite-dimensional
spin-glass models, we studied anunfrustratedmodel in a fluctuating geometry, with a finite
but possibly long relaxation time. Despite interrupted ageing, the kernel response shows a
relatively similar behaviour to finite-dimensional spin-glass models in three [18] and four
[19] dimensions, and structural glasses [20].

Moreover, we have also studied the long waiting time relaxation, where the system is
close to equilibrium. The effects of nonlinearities have been studied by assuming that the
relation between the thermoremanent magnetization and the autocorrelation had the same
form as in the linear regime, except for a magnetic-field-dependentXh(C). The variations
of Xh(C) are qualitatively similar whatever the strength of the nonlinearities.
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